A History Of Mathematics, Third Edition 9780470525487 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
A History Of Mathematics, Third Edition 9780470525487电子书下载地址
- 文件名
- [epub 下载] A History Of Mathematics, Third Edition 9780470525487 epub格式电子书
- [azw3 下载] A History Of Mathematics, Third Edition 9780470525487 azw3格式电子书
- [pdf 下载] A History Of Mathematics, Third Edition 9780470525487 pdf格式电子书
- [txt 下载] A History Of Mathematics, Third Edition 9780470525487 txt格式电子书
- [mobi 下载] A History Of Mathematics, Third Edition 9780470525487 mobi格式电子书
- [word 下载] A History Of Mathematics, Third Edition 9780470525487 word格式电子书
- [kindle 下载] A History Of Mathematics, Third Edition 9780470525487 kindle格式电子书
内容简介:
The updated new edition of the classic and comprehensive guide
to the history of mathematics
For more than forty years, A History of Mathematics has been the
reference of choice for those looking to learn about the
fascinating history of humankind’s relationship with numbers,
shapes, and patterns. This revised edition features up-to-date
coverage of topics such as Fermat’s Last Theorem and the Poincaré
Conjecture, in addition to recent advances in areas such as finite
group theory and computer-aided proofs.
Distills thousands of years of mathematics into a single,
approachable volume
Covers mathematical discoveries, concepts, and thinkers, from
Ancient Egypt to the present
Includes up-to-date references and an extensive chronological
table of mathematical and general historical developments.
Whether you're interested in the age of Plato and Aristotle or
Poincaré and Hilbert, whether you want to know more about the
Pythagorean theorem or the golden mean, A History of Mathematics is
an essential reference that will help you explore the incredible
history of mathematics and the men and women who created it.
书籍目录:
Foreword by Isaac Asimov.
Preface to the Third Edition.
Preface to the Second Edition.
Preface to the First Edition.
1 Traces.
Concepts and Relationships.
Early Number Bases.
Number Language and Counting.
Spatial Relationships.
2 Ancient Egypt.
The Era and the Sources.
Numbers and Fractions.
Arithmetic Operations.
"Heap" Problems.
Geometric Problems.
Slope Problems.
Arithmetic Pragmatism.
3 Mesopotamia.
The Era and the Sources.
Cuneiform Writing.
Numbers and Fractions; Sexagesimals.
Positional Numeration.
Sexagesimal Fractions.
Approximations.
Tables.
Equations.
Measurements: Pythagorean Triads.
Polygonal Areas.
Geometry as Applied Arithmetic.
4 Hellenic Traditions.
The Era and the Sources.
Thales and Pythagoras.
Numeration.
Arithmetic and Logistic.
Fifth Century Athens.
Three Classical Problems.
Incommensurability.
Paradoxes of Zeno.
Deductive Reasoning.
Democritus of Abdera.
Mathematics and the Liberal Arts.
The Academy.
Aristotle.
5 Euclid of Alexandria.
Alexandria.
Lost Works.
Extant Works.
The Elements.
6 Archimedes of Syracuse.
The Siege of Syracuse.
On the Equilibriums of Planes.
On Floating Bodies.
The Sand-Reckoner.
Measurement of the Circle.
On Spirals.
Quadrature of the Parabola.
On Conoids and Spheroids.
On the Sphere and Cylinder.
Book of Lemmas.
Semiregular Solids and Trigonometry.
The Method.
7 Apollonius of Perge.
Works and Tradition.
Lost Works.
Cycles and Epicycles.
The Conics.
8 Cross-Currents.
Changing Trends.
Eratosthenes.
Angles and Chords.
Ptolemy's Almagest.
Heron of Alexandria.
Decline of Greek Mathematics.
Nichomachus of Gerasa.
Diophantus of Alexandria.
Pappus of Alexandria.
The End of Alexandrian Dominance.
Proclus of Alexandria.
Boethius.
Athenian Fragments.
Byzantine Mathematicians.
9 Ancient and Medieval China.
The Oldest Known Texts.
The Nine Chapters .
Rod Numerals.
The Abacus and Decimal Fractions.
Values of Pi.
Thirteenth-Century Mathematics.
10 Ancient and Medieval India.
Early Mathematics in India.
The Sulbasutras.
The Siddhantas.
Aryabhata.
Numerals.
Trigonometry.
Multiplication.
Long Division.
Brahmagupta.
Indeterminate Equations.
Bhaskara.
Madhava and the Keralese School.
11 The Islamic Hegemony.
Arabic Conquests.
The House of Wisdom.
Al-Khwarizmi.
‘Abd Al-Hamid ibn-Turk.
Thabit ibn-Qurra.
Numerals.
Trigonometry.
Abu’l-Wefa and Al-Karkhi.
Al-Biruni and Alhazen.
Omar Khayyam.
The Parallel Postulate.
Nasir al-Din al-Tusi.
Al-Kashi.
12 The Latin West.
Introduction.
Compendia of the Dark Ages.
Gerbert.
The Century of Translation.
Abacists and Algorists.
Fibonacci.
Jordanus Nemorarius.
Campanus of Novara.
Learning in the Thirteenth Century.
Archimedes Revived.
Medieval Kinematics.
Thomas Bradwardine.
Nicole Oresme.
The Latitude of Forms.
Infinite Series.
Levi ben Gerson.
Nicholas of Cusa.
Decline of Medieval Learning.
13 The European Renaissance.
Overview.
Regiomontanus.
Nicolas Chuquet’s Triparty.
Luca Pacioli's Summa.
German Algebras and Arithmetics.
Cardan’s Ars Magna.
Rafael Bombelli.
Robert Recorde.
Trigonometry.
Geometry.
Renaissance Trends.
Fran?ois Viète.
14 Early Modern Problem Solvers.
Accessibility of Computation.
Decimal Fractions.
Notation.
Logarithms.
Mathematical Instruments.
15 Analysis, Synthesis, the Infinite, and Numbers.
Galileo’s Two New Sciences.
Bonaventura Cavalieri.
Evangelista Torricelli.
Mersenne’s Communicants.
Rene? Descartes.
Fermat’s Loci.
Gregory of St. Vincent.
The Theory of Numbers.
Gilles Persone de Roberval.
Girard Desargues and Projective Geometry.
Blaise Pascal.
Philippe de Lahire.
Georg Mohr.
Pietro Mengoli.
Frans van Schooten.
Jan de Witt.
Johann Hudde.
René Fran?ois de Sluse.
Christiaan Huygens.
16 British Techniques and Continental Methods.
John Wallis.
James Gregory.
Nicolaus Mercator and William Brouncker.
Barrow’s Method of Tangents.
Newton.
Abraham De Moivre.
Roger Cotes.
James Stirling.
Colin Maclaurin.
Textbooks.
Rigor and Progress.
Leibniz.
The Bernoulli Family.
Tschirnhaus Transformations.
Solid Analytic Geometry.
Michel Rolle and Pierre Varignon.
The Clairauts.
Mathematics in Italy.
The Parallel Postulate.
Divergent Series.
17 Euler.
The Life of Euler.
Notation.
Foundation of Analysis.
Logarithms and the Euler Identities.
Differential Equations.
Probability.
The Theory of Numbers.
Textbooks.
Analytic Geometry.
The Parallel Postulate: Lambert
18 Pre- to Postrevolutionary France.
Men and Institutions.
The Committee on Weights and Measures.
D'Alembert.
Bézout.
Condorcet.
Lagrange.
Monge.
Carnot.
Laplace.
Legendre.
Aspects of Abstraction.
Paris in the 1820s.
Fourier.
Cauchy.
Diffusion.
19 Gauss.
Nineteenth-Century Overview.
Gauss: Early Work.
Number Theory.
Reception of the Disquisitiones Arithmeticae.
Astronomy.
Gauss's Middle Years.
Differential Geometry.
Gauss's Later Work.
Gauss’s Influence.
20 Geometry.
The School of Monge.
Projective Geometry: Poncelet and Chasles.
Synthetic Metric Geometry: Steiner.
Synthetic Nonmetric Geometry: von Staudt.
Analytic Geometry.
Non-Euclidean Geometry.
Riemannian Geometry.
Spaces of Higher Dimensions.
Felix Klein.
Post-Riemannian Algebraic Geometry.
21 Algebra.
Introduction.
British Algebra and the Operational Calculus of Functions.
Boole and the Algebra of Logic.
Augustus De Morgan.
William Rowan Hamilton.
Grassmann and Ausdehnungslehre.
Cayley and Sylvester.
Linear Associative Algebras.
Algebraic Geometry.
Algebraic and Arithmetic Integers.
Axioms of Arithmetic.
22 Analysis.
Berlin and G?ttingen at Mid-Century.
Riemann in G?ttingen.
Mathematical Physics in Germany.
Mathematical Physics in English-Speaking Countries.
Weierstrass and Students.
The Arithmetization of Analysis.
Dedekind.
Cantor and Kronecker.
Analysis in France.
23 Twentieth Century Legacies.
Henri Poincare.
David Hilbert.
Integration and Measure.
Functional Analysis and General Topology.
Algebra.
Differential Geometry and Tensor Analysis.
Probability.
Bounds and Approximations.
The 1930s and World War II.
Nicolas Bourbaki.
Homological Algebra and Category Theory.
Algebraic Geometry.
Logic and Computing.
The Fields Medals.
24 Recent Trends.
Overview.
The Four-Color Conjecture.
Classification of Finite Simple Groups.
Fermat’s Last Theorem.
Poincaré's Query.
Future Outlook.
References.
eneral Bibliography.
Index.
作者介绍:
Uta C. Merzbach is Curator Emeritus of Mathematics at the
Smithsonian Institution and Director of the LHM Institute
The late Carl B. Boyer was a professor of Mathematics at Brooklyn
College and the author of several classic works on the history of
mathematics.
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
:人类从反复出现的具体情境中分离出抽象的概念,需要数千年的时间。在奠定哪怕是非常原始的数学基础的过程中,也必定遭遇了相当大的困难。
数学意识的基础:辨别数字、大小、顺序和形状。
这种对某些群组所共有的抽象属性(数)的认识,代表着像现代数学迈进一大步。
对数字的认知,最终变得足够广泛、足够清晰,这样一来人们觉得有必要以某种方式表达这种属性。
表示数字观念的单词,形成得却很缓慢。数字记号很可能要早于数字单词,因为,要标识一个数字,在木棒上划刻痕总比创立一个音调和谐的短语更容易。
语言的发展总是从具体走向抽象。
在某些神话仪式中,按照特定的顺序召唤参加者上场是必不可少的,没准,发明计算,就是为了处理这个问题。
其它内容:
书籍介绍
The updated new edition of the classic and comprehensive guide to the history of mathematics For more than forty years, A History of Mathematics has been the reference of choice for those looking to learn about the fascinating history of humankind’s relationship with numbers, shapes, and patterns. This revised edition features up-to-date coverage of topics such as Fermat’s Last Theorem and the Poincaré Conjecture , in addition to recent advances in areas such as finite group theory and computer-aided proofs. Distills thousands of years of mathematics into a single, approachable volume Covers mathematical discoveries, concepts, and thinkers, from Ancient Egypt to the present Includes up-to-date references and an extensive chronological table of mathematical and general historical developments. Whether you're interested in the age of Plato and Aristotle or Poincaré and Hilbert, whether you want to know more about the Pythagorean theorem or the golden mean, A History of Mathematics is an essential reference that will help you explore the incredible history of mathematics and the men and women who created it.
网站评分
书籍多样性:4分
书籍信息完全性:4分
网站更新速度:3分
使用便利性:4分
书籍清晰度:4分
书籍格式兼容性:6分
是否包含广告:8分
加载速度:5分
安全性:5分
稳定性:5分
搜索功能:7分
下载便捷性:6分
下载点评
- epub(568+)
- 值得购买(663+)
- 三星好评(625+)
- 书籍完整(117+)
- 下载快(161+)
- 好评多(301+)
- 藏书馆(408+)
- 品质不错(151+)
- 书籍多(277+)
- 不亏(343+)
- pdf(327+)
- 简单(489+)
下载评价
- 网友 车***波:
很好,下载出来的内容没有乱码。
- 网友 扈***洁:
还不错啊,挺好
- 网友 冉***兮:
如果满分一百分,我愿意给你99分,剩下一分怕你骄傲
- 网友 隗***杉:
挺好的,还好看!支持!快下载吧!
- 网友 孙***夏:
中评,比上不足比下有余
- 网友 利***巧:
差评。这个是收费的
- 网友 印***文:
我很喜欢这种风格样式。
- 网友 敖***菡:
是个好网站,很便捷
- 网友 濮***彤:
好棒啊!图书很全
- 网友 养***秋:
我是新来的考古学家
- 网友 潘***丽:
这里能在线转化,直接选择一款就可以了,用他这个转很方便的
- 网友 曾***文:
五星好评哦
- 网友 益***琴:
好书都要花钱,如果要学习,建议买实体书;如果只是娱乐,看看这个网站,对你来说,是很好的选择。
喜欢"A History Of Mathematics, Third Edition 9780470525487"的人也看了
星空之下永远有路(一位建筑设计师的创意启示) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
它们的性 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
职场写作很简单 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
【新华书店自营店】小小聪明豆绘本.成长启蒙纸板书.波西和皮普 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
冯内古特:最后的访谈 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
加菲猫全集(31-40) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
正版 100个句子记完7000个托福单词 托福TOELF考试单词词汇书 托福词汇乱序版 俞敏洪 新东方英语 词汇书籍 托福考试正版 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
The Negotiation Book 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
中国编辑出版教育透视 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
3本/套装【九周年店庆回馈】【假一罚万】【当天发】【官方原版全新塑封当天发货】哥特建筑与雕塑装饰艺术 第123卷 ( 重现哥特建筑与雕塑惊人的艺术魅力!)哥特艺术 巴洛克艺术 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 鼠族 安古兰艾斯纳哈维三大重量级国 际漫画奖大满贯 荣获普利策奖将漫画领入严肃文学的殿堂 时代周刊1 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 太极内功心法全书下卷【正版】 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 环境化学实验(卜庆伟) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 奥特银河大怪兽之战 珍藏版全图鉴 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 贺绿汀传 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 国学经典书系·中华传统文化经典注音全本(第2辑):唐诗三百首 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 心理评估与测量学 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 黄帝内经(古典名著 白话全译) 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 小学生手抄报实用宝典 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
- 房屋拆迁以案说法实用指南 下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线
书籍真实打分
故事情节:5分
人物塑造:4分
主题深度:4分
文字风格:4分
语言运用:8分
文笔流畅:6分
思想传递:4分
知识深度:9分
知识广度:7分
实用性:6分
章节划分:6分
结构布局:8分
新颖与独特:4分
情感共鸣:6分
引人入胜:9分
现实相关:6分
沉浸感:6分
事实准确性:3分
文化贡献:8分